Abstract
Starch based carbon aerogel has attracted significant attention due to the wide source, environmental friendliness and low price of raw materials. Here, starch based carbon aerogel was fabricated by graft reaction and cross-linking reaction of starch. The network structure of starch hydrogel was optimized through graft and cross-linking reaction. After freeze drying and high temperature carbonization, the obtained carbon aerogel that carbonized at 800 °C showed a specific surface area of 1508 m2·g−1 without activation which is far higher than that of other unactivated carbon aerogels. The starch based carbon aerogel carbonized at 800 °C exhibited superior methylene blue adsorption ability with a maximum adsorption capacity of 963.5 mg·g−1 as a result of its rich surface functional groups, high specific surface area, and reasonable pore size distribution. Furthermore, the carbon aerogel carbonized at 700 °C exhibited excellent electrochemical performance with a specific capacitance of 180.1 F·g−1 at a current density of 1 A·g−1as electrode materials for supercapacitors. Overall, this work provides a new method to prepare high performance starch based carbon aerogel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.