Abstract

AbstractQuantifying planform changes of large and actively migrating rivers such as those in the tropical Amazon at multidecadal time scales, over large spatial domains, and with high spatiotemporal frequency is essential for advancing river morphodynamic theory, identifying controls on migration, and understanding the roles of climate and human influences on planform adjustments. This paper addresses the challenges of quantifying river planform changes from annual channel masks derived from Landsat imagery and introduces a set of efficient methods to map and measure changes in channel widths, the locations and rates of migration, accretion and erosion, and the space‐time characteristics of cutoff dynamics. The techniques are assembled in a comprehensive MATLAB toolbox called RivMAP (River Morphodynamics from Analysis of Planforms), which is applied to over 1500 km of the actively migrating and predominately meandering Ucayali River in Peru from 1985 to 2015. We find multiscale spatial and temporal variability around multidecadal trends in migration rates, erosion and accretion, and channel widths revealing a river dynamically adjusting to sediment and water fluxes. Confounding factors controlling planform morphodynamics including local inputs of sediment, cutoffs, and climate are parsed through the high temporal analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.