Abstract

The normalized differential vegetation index (NDVI) for Landsat is not continuous on the time scale due to the long revisit period and the influence of clouds and cloud shadows, such that the Landsat NDVI needs to be filled in and reconstructed. This study proposed a method based on the genetic algorithm-artificial neural network (GA-ANN) algorithm to reconstruct the Landsat NDVI when it has been affected by clouds, cloud shadows, and uncovered areas by relying on the MODIS characteristics for a wide coverage area. According to the self-validating results of the model test, the RMSE, MAE, and R were 0.0508, 0.0557, and 0.8971, respectively. Compared with the existing research, the reconstruction model based on the GA-ANN algorithm achieved a higher precision than the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) and the flexible space-time data fusion algorithm (FSDAF) for complex land use types. The reconstructed method based on the GA-ANN algorithm had a higher root mean square error (RMSE) and mean absolute error (MAE). Then, the Sentinel NDVI data were used to verify the accuracy of the results. The validation results showed that the reconstruction method was superior to other methods in the sample plots with complex land use types. Especially on the time scale, the obtained NDVI results had a strong correlation with the Sentinel NDVI data. The correlation coefficient (R) of the GA-ANN algorithm reconstruction's NDVI and the Sentinel NDVI data was more than 0.97 for the land use types of cropland, forest, and grassland. Therefore, the reconstruction model based on the GA-ANN algorithm could effectively fill in the clouds, cloud shadows, and uncovered areas, and produce NDVI long-series data with a high spatial resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.