Abstract

Digital pulse compression was used to enhance the performance of optical time-domain reflectometry, employing Brillouin dynamic gratings (BDGs) in polarization-maintaining fibers. The fundamental and unique issues in BDG field-reflection are addressed, and rules for proper selection of the coding and detection techniques are formulated. While coding in BDG applications generally requires coherent processing of the reflection, conditions are established for use of direct detection. A 256-bit Golay complementary unipolar probe code is used to demonstrate an eightfold signal-to-noise ratio enhancement in the measurement of the Brillouin gain spectrum (BGS), with a spatial resolution of 2 cm and a full-BGS acquisition rate of 133⅓ kHz, resulting in an equivalent reduction in the estimation error of small Brillouin frequency shifts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call