Abstract

AbstractAssessing spatiotemporal water storage variability in the Great Lakes Watershed (GLW) is critical given its transboundary status impacting both Canada and the United States. Here, we apply a novel inversion strategy to global positioning system (GPS) vertical movements to achieve high spatial resolution total water storage (TWS) variations in GLW through improved processing. The steps are composed of removing load changes driven by the lake water fluctuation by forward modeling, isolating the Great Lakes grids to solve the ill‐conditioned problem in inversion, and inverting the GPS residual series to estimate TWS variations on land (TWSGPS). The results show that the regional dense continuous GPS observation network can successfully resolve TWS on land at monthly timescales with 30–45 km spatial resolution. We also could effectively capture fine‐scale TWS features than GRACE/GFO mascon products. GRACE/GFO satellites largely underestimate seasonal and long‐term TWS spatial fluctuations, but their temporal patterns coincide with those from GPS. The average annual amplitude of TWSGPS on land reaches 82.0 mm, greatly exceeding estimates from GRACE/GFO (∼48.0 mm) and composite hydrological model outputs (∼62.0 mm). The seasonal groundwater fluctuations inferred from GPS have peak‐to‐peak amplitudes of ∼40 km3 with the maximum around September. This coincides with that from GRACE/GFO. However, the magnitudes and phases of groundwater storage from GPS vary markedly among the subbasins in GLW, and the different snow and soil moisture amounts measured in each subbasin cause discrepancies among these GPS estimates. This study shows the value of GPS data in spatially downscaling GRACE/GFO data and providing high‐resolution output at spatiotemporal scales with low latency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call