Abstract

We leverage the high spatial and energy resolution of monochromated aberration-corrected scanning transmission electron microscopy to study the hybridization of cyclic assemblies of plasmonic gold nanorods. Detailed experiments and simulations elucidate the hybridization of the coupled long-axis dipole modes into collective magnetic and electric dipole plasmon resonances. We resolve the magnetic dipole mode in these closed loop oligomers with electron energy loss spectroscopy and confirm the mode assignment with its characteristic spectrum image. The energy splitting of the magnetic mode and antibonding modes increases with the number of polygon edges (n). For the n=3-6 oligomers studied, optical simulations using normal incidence and s-polarized oblique incidence show the respective electric and magnetic modes' extinction efficiencies are maximized in the n=4 arrangement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call