Abstract

AbstractWater wave energy is a vital renewable‐energy resource, but it is less developed due to the characteristics of water wave with low and varying frequency. Herein, a bifilar‐pendulum coupled hybrid nanogenerator (BCHNG) module, which includes an electromagnetic generator (EMG), two piezoelectric nanogenerators (PENGs), and two multilayer‐structured triboelectric nanogenerators (TENGs), is incorporated into a vessel‐like platform for wave energy harvesting. The combination of the lightweight TENG and the heavy PENG and EMG can not only increase the ability of power take‐off to capture water wave energy, but also improve the space utilization rate of BCHNG module and facilitate the design of the floating wave energy collecting device. Furthermore, the BCHNG module can harvest the kinetic energy and gravitational potential energy of the water wave at the same time, which benefits from the two degrees of swing freedom of the bifilar‐pendulum. Importantly, thanks to the accurate geometric design and the reasonable utilization of space, the BCHNG module achieves a high peak power density of 358.5 W m−3. The findings not only provide a novel method for the large‐scale development of blue energy, but also offer an opportunity for the development of self‐powered marine resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.