Abstract

The aim of this study was to use traditional mutagenesis to generate hyper-cellulolytic mutants with emphasis on stable, non-spore formers, shorter enzyme producing times and higher saccharification efficiency at high solid loadings. An in-house isolated strain of Aspergillus terreus (At) was identified, fingerprinted and mutated. A sequential process of mutation followed by stringent selection generated mutant At 9 , which produced optimal cellulase at day 4 instead of day 7, was non-spore former with high stability and grew on a lower pH than parental strain. At 9 cellulases were used successfully at high solid loads [up to 25 % (w/v)] in a modified system at 50 °C with reduced hydrolysis times compared to parent strain. In current work ultra violet (UV) mutagenesis and intelligent screening design combined with growth on a cheap substrate for enzyme production was demonstrated. With this work we present a single organism enzyme system with substantially lower production time and decreased saccharification time at high solid loads.

Highlights

  • The aim of this study was to use traditional mutagenesis to generate hyper-cellulolytic mutants with emphasis on stable, non-spore formers, shorter enzyme producing times and higher saccharification efficiency at high solid loadings

  • Sequence data was submitted to the National Centre for Biotechnology Information (NCBI)

  • Ribosomal genes have regions of variability and this sequence variation of ITS regions has led to their use in phylogenic studies of many organisms (White et al 1990)

Read more

Summary

Introduction

The aim of this study was to use traditional mutagenesis to generate hyper-cellulolytic mutants with emphasis on stable, non-spore formers, shorter enzyme producing times and higher saccharification efficiency at high solid loadings. A sequential process of mutation followed by stringent selection generated mutant At9, which produced optimal cellulase at day 4 instead of day 7, was non-spore former with high stability and grew on a lower pH than parental strain. Lignocellulose is one of the most abundant materials available on earth, with immense potential as a substrate for energy generation. It consists of carbohydrate polymers (cellulose and hemicellulose) and lignin is a highly recalcitrant structure and difficult to deconstruct (Krassing 1992) and makes enzymatic hydrolysis a daunting

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.