Abstract

Spheroidal spicular like topological fluid flow in an angled vortex fluidic device (VFD) housing a 20 mm diameter tube with a hemispherical base rotating at 4k rpm and tilted at 45° is effective in reducing the thermodynamic equilibrium concentration of fullerene C60 in toluene, with the formation of spicules of the material under continuous flow processing. Under the same operational conditions in the presence of polystyrene beads 2 to 6 μm in diameter, spicules of C60ca. 150 nm in length grow on their surfaces. This establishes that the spheroidal topological fluid flow in the VFD prevails while enveloping spheroidal like particles of such size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call