Abstract

Climate warming is predicted to increase fire activity across the Eurasian boreal larch forest in the 21st century, which could have serious consequences on carbon storage. Quantifying the effects of fire disturbance on forest structure and aboveground net primary productivity (ANPP) could aid in our ability to predict future carbon storage on a regional and biome level. In this study, we examined the spatial heterogeneity of forest structure and ANPP on sites of varying fire severity and topographic position in a recently burned landscape in the Great Xing’an Mountains, China. Results indicated that after 11 years of vegetation regrowth, fire severity significantly affected forest regeneration ANPP. Spatial heterogeneities in forest regeneration ANPP were explained by both tree sapling density and understorey vegetation abundance. Although understorey vegetation productivity on average contributed 50% of total ANPP after fire, the increase in understorey productivity with fire severity could not offset the decrease in tree productivity in severely burned stands where tree sapling density was limited. Our results suggest that high-severity fire can decrease forest regeneration ANPP by altering forest structure in the early post-fire successional stage and that this shift in forest structure may influence future forest productivity trajectories over an extended period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call