Abstract

Methylammonium lead single crystal (MAPbI3 SC) possesses superior optoelectronic properties and low manufacturing cost, making it an ideal candidate for X-ray detection. However, the ionic migration of the perovskites usually leads to instability, dark current drift, and hysteresis of the detector, limiting their applications in well-established technologies. Here, a series of X-ray detectors of MAPbI3 SCs are reported with different degrees of deuteration (DxMAPbI3, x = 0, 0.15, 0.75, 0.99). By controlling the content of deuterium (D) in organic cations, the sensitivity, detection limits, ion migration, and resistivity of the detector can be controlled, thereby improving its performance. Due to stronger hydrogen bonds (N─D···I), the ion activation energy significantly increases to 886 meV. Consequently, the D0.99MAPbI3 SC detector shows more than five-fold enhancement, achieving a record-high mobility-lifetime (µτ) product of 5.39 × 10-2cm2V-1, with an ultrahigh sensitivity of 2.18 × 106 µC Gy-1 cm-2 under 120keV hard X-ray and a low detection limit of 4.8 nGyair s-1, as well as long-term stability. The study provides a straightforward strategy for constructing ultrasensitive X-ray detection and imaging systems based on perovskite SCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.