Abstract

Optical fiber Fabry-Pérot (FP) interferometer sensors have long been the focus of researchers in sensing applications because of their simple light path, low cost, compact size and convenient manufacturing methods. A miniature and highly sensitive optic fiber temperature sensor using an ultraviolet glue-filled FP cavity in a hollow capillary fiber is proposed. The sensor is fabricated by fusion splicing a single-mode fiber with a hollow capillary fiber, which is filled with ultraviolet glue to form a FP cavity. The sensor has a good linear response in the temperature testing and high-temperature sensitivity, which can be increased with the length of the FP cavity. The experimental results show that the temperature sensitivity reaches 1.174 nm/°C with a high linear response in the range of 30-60 °C. In addition, this sensor is insensitive to pressure and can be highly suitable for real-time water temperature monitoring for ocean research. The proposed ultraviolet glue-filled structure has the advantages of easy fabrication, high-temperature sensitivity, low cost and an arbitrary length of capillary, which has broad application prospects for marine survey technology, biological diagnostics and environmental monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call