Abstract

The internal stress and stress gradient of thick () and thin () polysilicon films were evaluated with surface micromachined test structures. The structure that measured internal stress consisted of actuator beams rotating an indicator through an angle corresponding to the stress. The indicator deflection was measured in an SEM. Finite element analysis (FEA) was used both to optimize the design and to calibrate the structure. A folded beam design was used to minimize the total area the structure occupied so that it could be incorporated in the wafer layout of other surface micromachined details, and used for online process diagnostics. The indicator was provided with a Vernier scale to facilitate quick evaluation in an optimal microscope. The stress gradient was measured from the deflection of long () cantilever beams. The deflection was measured in an optical microscope and the output was calibrated with FEA calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.