Abstract

A weakly-coupled multicore fiber can generate supermodes when the multi-cores are closer to enter the evanescent power coupling region. The high sensitivity strain sensors using tapered four-core fibers (FCFs) were demonstrated. The fan-in and fan-out couplers were used to carry out light coupling between singlemode fibers and the individual core of the FCFs. A broadband lightsource from superlumminescent diodes (SLDs) was launched into one of the four cores arranged in a rectangular configuration. When the FCF was substantially tapered, the asymmetric supermodes were produced to generate interferences through this corner-core excitation scheme. During tapering, the supermodes were excited based on a tri-core structure initially and then transited to a rectangular quadruple-core structure gradually to reach the sensitivity of 185.18 pm/μԑ under a tapered diameter of 3 μm. The asymmetric evanescent wave distribution due to the corner-core excitation scheme is helpful to increase the optical path difference (OPD) between supermodes for improving the strain sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.