Abstract

In this paper, analyses on sensitivity and link budget have been presented to guide the design of high-sensitivity noncontact vital sign detector. Important design issues such as flicker noise, baseband bandwidth, and gain budget have been discussed with practical considerations of analog-to-digital interface and signal processing methods in noncontact vital sign detection. Based on the analyses, a direct-conversion 5.8-GHz radar sensor chip with 1-GHz bandwidth was designed and fabricated. This radar sensor chip is software configurable to set the operation point and detection range for optimal performance. It integrates all the analog functions on-chip so that the output can be directly sampled for digital signal processing. Measurement results show that the fabricated chip has a sensitivity of better than -101 dBm for ideal detection in the absence of random body movement. Experiments have been performed successfully in laboratory environment to detect the vital signs of human subjects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call