Abstract

We report on optical-fiber cavity ring-down spectroscopy (CRDS) in the liquid phase using a laser emitting at telecommunication wavelengths. A fiber-ring cavity, comprising a short evanescent-wave coupler for radiation-matter interaction, is used as a sensor while its resonance modes are frequency locked to the laser. Exploiting the intrinsic sensitivity and noise immunity of the CRDS technique, we show that liquid absorption can be detected down to a level that is nearly a factor of 20 above the shot noise limit. We provide a thorough comparison between the experimental results and various noise contributions and address different expressions that can be used to calculate the shot noise equivalent absorbance. As a proof of principle, polyamine detection in aqueous solutions is carried out demonstrating a minimum detectable absorbance of 1.8×10(-7) Hz(-1/2), which, to our knowledge, is the best sensitivity limit reported to date for evanescent-wave sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.