Abstract

A high-sensitivity temperature sensor based on gold-coated D-shaped photonic crystal fiber is proposed in this paper. To enhance the sensing performances, gold as the surface plasmon resonance material is coated on the polishing surface. The thermosensitive liquid consists of ethanol and chloroform, and it is placed on the outer layer of the photonic crystal fiber. As the phase-matching condition is satisfied, the core mode couples to the surface plasmon polariton mode, and energy transfer occurs. The influences of the structural parameters on the sensing characteristics were studied using the finite element method. The numerical results show the average sensitivity can reach up to 10.61 nm/°C, and the linearity R2=0.99341 for the temperature sensing ranges of 0-60°C. Moreover, a good spectral shape can be realized by the proposed fiber. Compared with some previously reported temperature sensors, the proposed temperature sensor shows excellent performances in terms of the sensitivity, detection range, and fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.