Abstract

In response to the growing demand for high-sensitivity accelerometers in vector hydrophones, a piezoelectric MEMS accelerometer (PMA) was proposed, which has a four-cantilever beam integrated inertial mass unit structure, with the advantages of being lightweight and highly sensitive. A theoretical energy harvesting model was established for the piezoelectric cantilever beam, and the geometric dimensions and structure of the microdevice were optimized to meet the vibration pickup conditions. The sol-gel and annealing technology was employed to prepare high-quality PZT thin films on silicon substrate, and accelerometer microdevices were manufactured by using MEMS technology. Furthermore, the MEMS accelerometer was packaged for testing on a vibration measuring platform. Test results show that the PMA has a resonant frequency of 2300 Hz. In addition, there is a good linear relationship between the input acceleration and the output voltage, with V = 8.412a - 0.212. The PMA not only has high sensitivity, but also has outstanding anti-interference ability. The accelerometer structure was integrated into a vector hydrophone for testing in a calibration system. The results show that the piezoelectric vector hydrophone (PVH) has a sensitivity of -178.99 dB@1000 Hz (0 dB = 1 V/μPa) and a bandwidth of 20~1100 Hz. Meanwhile, it exhibits a good "8" shape directivity and consistency of each channel. These results demonstrate that the piezoelectric MEMS accelerometer has excellent capabilities suitable for use in vector hydrophones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call