Abstract

Small volume operation and rapid thermal cycling have been subjects of numerous reports in micro reactor chip development. Sensitivity aspects of the micro PCR reactor have not been studied in detail, however, despite the fact that detection of rare targets or trace genomic material from clinical and/or environmental samples has been a great challenge for microfluidic devices. In this study, a serpentine shaped thin (0.75 mm) polycarbonate plastic PCR micro reactor was designed, constructed, and tested for not only its rapid operation and efficiency, but also its detection sensitivity and specificity, in amplification of Escherichia coli (E. coli) K12-specific gene fragment. At a template concentration as low as 10 E. coli cells (equivalent to 50 fg genomic DNA), a K12-specific gene product (221 bp) was adequately amplified with a total of 30 cycles in 30 min. Sensitivity of the PCR micro reactor was demonstrated with its ability to amplify K12-specific gene from 10 cells in the presence of 2% blood. Specificity of the polycarbonate PCR micro reactor was also proven through multiplex PCR and/or amplification of different pathogen-specific genes. This is, to our knowledge, the first systematic study of assay sensitivity and specificity performed in plastic, disposable micro PCR devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call