Abstract
A photonic quasi-crystal fiber (PQF) methane sensor based on surface plasmon resonance (SPR) is designed and described. The double-side polished six-fold photonic quasi-crystal fiber coated with a silver film produces enhanced SPR effects and sensitivity. A nanostructured thin film with cryptophane-E-doped polysiloxane is deposited on silver as the methane-sensitive surface layer and to mitigate oxidation of silver. The sensor is analyzed and optimized numerically by the full-vector finite element method. For methane concentrations in the range of 0% to 3.5%, the maximum sensitivity of the sensor is 8 nm/%, and the average sensitivity is 6.643 nm/%. Compared to traditional gas sensors, this sensor provides accurate sensing of methane besides offering advantages such as the low cost, miniaturized size, online monitoring, and immunity to electromagnetic field interference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.