Abstract

Thermal runaway gas analysis is a powerful technique for lithium-ion battery (LIB) safety management and risk assessment. Here, we propose a novel hollow-core antiresonant fiber (HC-ARF)-based Raman gas sensing device for simultaneously sensitive detection of thermal runaway gas products (CH4, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{C}_{{2}}\text{H}_{{6}}$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{C}_{{2}}\text{H}_{{4}}$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{C}_{{2}}\text{H}_{{2}}$ </tex-math></inline-formula> , CO, CO2, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{H}_{{2}}{)}$ </tex-math></inline-formula> . A micromirror is attached to the rear of fiber, which provides 3.1 times Raman signal enhancement compared to bare fiber, and two filtering methods are adopted to effectively filter out the background noise signal of fiber. With 200-mW excitation power and 60-s integration time, a low limit of detection (LOD) is achieved: 0.8, 3.0, 1.4, 1.5, 9.2, 4.2, and 4.1 ppm <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\cdot $ </tex-math></inline-formula> bar for CH4, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{C}_{{2}}\text{H}_{{6}}$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{C}_{{2}}\text{H}_{{4}}$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{C}_{{2}}\text{H}_{{2}}$ </tex-math></inline-formula> , CO, CO2, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{H}_{{2}}$ </tex-math></inline-formula> , respectively, which is verified through the detection of low-concentration gases. The proposed device has a short response time and does not require gas separation from the battery, and we believe that this provides a new idea for nondestructive detection of battery status and in situ assessment of battery health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call