Abstract

We propose a Kretschmann-based nonlinear plasmonic sensor with a gold thin film deposited on a glass prism. Visible and mid-infrared signals are generated in this configuration through the nonlinear processes of sum- and difference-frequency generation, respectively. The calculated maximum sensitivity and figure of merit of our sum-frequency-based sensor is an order of magnitude higher than that of a traditional Kretschmann-based sensor in the visible range. Our difference-frequency-based sensor has a maximum sensitivity of $1.0\times 10^{6}$ $\text{nm/RIU}$ in air at 4.29 $\mu\text{m}$ , which is three orders of magnitude higher than that of existing devices in the mid-infrared range, with its maximum figure of merit almost two orders of magnitude higher than the alternatives. By comparison, the calculated sensitivity for operation in water for both sum- and difference-frequency is about half that in air. We, thus, demonstrate significant gains in the sensitivity of the well-known Kretschmann-based plasmonic sensor over a wide wavelength range, without modifying the physical sensor, but by exploiting and simply taping the nonlinear optical properties of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.