Abstract

A key question regarding the unconventional superconductivity of [Formula: see text] remains whether the order parameter is single- or two-component. Under a hypothesis of two-component superconductivity, uniaxial pressure is expected to lift their degeneracy, resulting in a split transition. The most direct and fundamental probe of a split transition is heat capacity. Here, we report measurement of heat capacity of samples subject to large and highly homogeneous uniaxial pressure. We place an upper limit on the heat-capacity signature of any second transition of a few percent of that of the primary superconducting transition. The normalized jump in heat capacity, [Formula: see text], grows smoothly as a function of uniaxial pressure, favoring order parameters which are allowed to maximize in the same part of the Brillouin zone as the well-studied van Hove singularity. Thanks to the high precision of our measurements, these findings place stringent constraints on theories of the superconductivity of [Formula: see text].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.