Abstract

In this paper, a highly sensitive optical fiber gas pressure sensor is proposed and experimentally verified. The sensor is composed of two Fabry-Pérot (F-P) cavities, and two F-P cavities are fabricated by a single-mode fiber and two quartz capillaries with different inner diameters splicing. Among them, the small inner diameter capillary is used as a gas channel connecting the large inner diameter capillary and the external environment. The manufacturing process of the sensor only involves capillary cleaver and splicing and does not involve other complex manufacturing technologies. By correctly adjusting the length of the two quartz capillaries, when the free spectral range of the two F-P cavities is very close, the optical Vernier effect will be observed and used as a sensitive probe for detecting gas pressure. The experimental results show that, in the pressure range of 0-0.8 MPa, the gas pressure sensitivity of the sensor reaches -81.73 nm/MPa with a linearity of 99.7%, and the temperature cross-sensitivity is only 1.82 kPa/°C. Due to its easy manufacture, high sensitivity, compact structure, and small volume, the sensor has become one of the preferred structures for large-scale use in the field of gas sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call