Abstract

The dose response of high-sensitivity GafChromic film to photons from 125I seeds for doses up to 200 Gy was established. The optical densities were measured using two types of densitometers: (a) a Macbeth spot densitometer with broadband light spectrum, and (b) an LKB He-Ne laser scanning microdensitometer with red light of wavelength 632.8 nm. The net optical density was found to be a power function of dose with exponents of 0.858 and 0.997, for the Macbeth and LKB densitometers, respectively. Film sensitivity with the LKB densitometer was about double of that with the Macbeth densitometer. The dose measurements were performed using the high-sensitivity GafChromic films for 125I model 6702 seed in solid water phantom. Each film was positioned parallel to the seed's long axis and centered at the seed's transverse axis. Films were exposed at various distances, ranging from contact to 3 cm from the seed center. The radiation dose delivered to the film center varied from 7 to 50 Gy, depending on the distance. The optical density at the film center was measured using both types of densitometers. Dose conversion was achieved with the established dose response curves for the respective densitometers. The dose values, along the seed's transverse axis obtained using both densitometers, were compared with each other, and also compared with published thermoluminescent dosimeter (TLD) data and Monte Carlo results. General agreement was found. It was concluded that the high-sensitivity GafChromic film measurement is a feasible method for 125I seed dosimetry in solid water phantom.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.