Abstract

A novel high-sensitivity temperature sensor based on a chirped thin-core fiber Bragg grating Fabry-Perot interferometer (CTFBG-FPI) and the Vernier effect is proposed and demonstrated. With femtosecond laser direct writing technology, two CTFBG-FPIs with different interferometric cavity lengths are inscribed inside a thin-core fiber to form a Vernier effect system. The two FPIs consist of two pairs of CTFBGs with a full width at half maximum (FWHM) of 66.5 nm staggered in parallel. The interferometric cavity lengths of the two FPIs were designed to be 2 mm and 1.98 mm as the reference arm and sensing arm of the sensor, respectively. The temperature sensitivity of this sensor was measured to be -1.084 nm/°C in a range of 40-90°C. This sensor is expected to play a crucial role in precision temperature measurement applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.