Abstract

High-sensitivity quantitative analysis of sepsis disease markers in circulating blood is essential for sepsis early diagnosis, rapid stratification, and interventional treatment. Herein, a high-sensitivity biosensor combining surface-enhanced Raman spectroscopy (SERS) and functionalized magnetic materials was developed to quantitatively detect interleukin-6 (IL-6), a glycoprotein disease marker closely related to sepsis. First, boronic acid-functionalized magnetic nanomaterials with high adsorption performance were synthesized by utilizing the branched polyethyleneimine to provide many binding sites for boronic acid. Under antibody-free conditions, dendrimer-assisted boronic acid-functionalized magnetic nanomaterials selectively capture glycoproteins in complex biological samples as bio-capture element. Then, a core–shell bimetallic material with plenty of ‘hot spots’ was designed and synthesized as the enhancement substrate. The 4-Mercaptobenzonitrile (4-MP) with a characteristic peak at 2224 cm−1 (Raman-silent region) was embedded as the Raman reporter to form a SERS immune probe with highly efficient electromagnetic enhancement effect, achieving specific recognition and high-sensitivity detection of IL-6 on bio-capture elements. Using this strategy for quantitative analysis of IL-6, a wide detection range (0.5–5000 pg ml−1) and a low detection limit (0.453 pg ml−1) were obtained. Moreover, this method exhibited excellent detection performance for IL-6 in human serum samples, demonstrating its potential promise in screening clinically relevant diseases. The biosensor presented here not only provides a novel and universally applicable sensing strategy for the enrichment and detection of trace glycoprotein disease markers, but also the application of a portable Raman spectrometer provides a more reliable experimental basis for the diagnosis and treatment of major diseases in the clinic or remote and deprived areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.