Abstract

A residential building’s wastewater presents a potential non-invasive method of surveilling numerous infectious diseases, including SARS-CoV-2. We analyzed wastewater from 16 different residential locations at Syracuse University (Syracuse, NY, USA) during fall semester 2020, testing for SARS-CoV-2 RNA twice weekly and compared the presence of clinical COVID-19 cases to detection of the viral RNA in wastewater. The sensitivity of wastewater surveillance to correctly identify dormitories with a case of COVID-19 ranged from 95% (95% confidence interval [CI] = 76–100%) on the same day as the case was diagnosed to 73% (95% CI = 53–92%), with 7 days lead time of wastewater. The positive predictive value ranged from 20% (95% CI = 13–30%) on the same day as the case was diagnosed to 50% (95% CI = 40–60%) with 7 days lead time. The specificity of wastewater surveillance to correctly identify dormitories without a case of COVID-19 ranged from 60% (95% CI = 52–67%) on the day of the wastewater sample to 67% (95% CI = 58–74%) with 7 days lead time. The negative predictive value ranged from 99% (95% CI = 95–100%) on the day of the wastewater sample to 84% (95% CI = 77–91%) with 7 days lead time. Wastewater surveillance for SARS-CoV-2 at the building level is highly accurate in determining if residents have a COVID-19 infection. Particular benefit is derived from negative wastewater results that can confirm a building is COVID-19 free.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.