Abstract

In this paper, we presented the fabrication and properties of new ammonia (NH3) sensors with sensitive layer of nickel nanoparticles decorated on three-dimensional nitrogen-doped graphene-based frameworks/polyaniline (NiNPs@3D-(N)GFs/PANI) hybrid. The hybrid are synthesized through in-situ oxidative polymerization on flexible thin substrate. Synergetic behavior between both components manifested outstanding sensitivity (750.2 at 1000 ppm NH3) and quick response (95 s) and recovery (25 s) times and a lower limit of detection (~ 45 ppb) at room temperature. The sensitivity of NiNPs@3D-(N)GFs/PANI hybrid sensor was shown to be about 14 times more than its of pure PANI sensor at 1000 ppm of NH3. The excellent sensitivity of the as-prepared hybrid is mainly originated from the substantial rise of hole-like carriers by NiNPs@3D-(N)GFs as well as improved inter-molecule interactions via π- π electron networks. The obtained results revealed significant advantages for the synthesized hybrid sensor, making it a suitable choice for real-world applications of NH3 detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.