Abstract

A new type of high-sensitive transmission gas sensor based on the coupled gratings (CGs) and the corresponding Fabry–Pérot-like (FP-like) model for evaluating the resonance peaks are presented. The estimated locations of the FP-like resonance obtained by this theoretical model are well agreed with those of the exact results. It is shown that a narrow FP-like channel with high transmissivity occurs in the opaque background of the CGs, and its location is shifted linearly with the variation of the refractive index (RI) of the gaseous analyte. The transmission peak of the sideband can be selected as a reference, and it remains nearly fixed as the RI of the analyte is varied. Good sensing properties of the CGs sensor can be maintained, regardless of whether the two grating membranes are laterally aligned or not. The sensitivity of the CGs sensor is immune to the variation of the RI of the substrate. By selecting the higher order FP-like mode (m = 4), sensitivity as high as 748 nm/RIU with the figure of merit of 374 can be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.