Abstract

A novel and versatile immunosensing strategy was developed for ultrasensitive and specific detection of proteins by organically integrating interfacial specific target recognition and homogeneous transcription amplification. In principle, classic antigen-antibody sandwich structure on the microplate could realize the specific identification of target protein. Biotinylated DNA probe was subsequently introduced by streptavidin-biotin system as a bridge linking interfacial and homogeneous reaction. The biotinylated DNA initiated exponential transcription amplification in the solution, which converted per target recognition event on the interface to numerous single-stranded RNA products in solution for highly sensitive fluorescence immunosensing. The proposed immunoassay based on interfacial recognition-induced homogeneous exponential transcription (IR-HET) for vascular endothelial growth factor (VEGF) detection showed a good linear range from 0.01 to 1000 pg/mL and the limit of detection as low as 1 fg/mL, which was 3 orders lower than traditional ELISA method. The established strategy was also successfully applied to directly detect VEGF from culture supernatants of tumor cells and clinical body fluid samples, proving very high sensitivity, selectivity and low matrix effect. Therefore, IR-HET-based immunosensing strategy might become a potential powerful tool be applied in ultrasensitive detection of low abundance protein biomarker for clinical early diagnosis, treatment and prognosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.