Abstract

A highly sensitive amperometric L-glutamate biosensor based on the electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide has been developed on Lauth's Violet (known as thionine)/multiwalled carbon nanotubes (Th-MWCNTs) composite film, which is used as a mediator and an enzyme immobilization matrix. The glutamate biosensor, which is fabricated by immobilizing glutamate dehydrogenase (GLDH) on the surface of Th-MWCNTs, displayed a precipitous response (ca. 3 s), a low detection limit (15.9 nM), a wide linear dynamic range (0.1 to 500 microM), and high sensitivity of 281.6 microAmM(-1) cm(-2), higher biological affinity, as well as good stability and repeatability. Interferences from other biological compounds were also studied for the fabricated sensor. The Th-MWCNTs system exemplifies a simple and efficient approach to the assimilation of GLDH and electrodes, which can provide analytical access to a large group of enzymes for wide range of bioelectrochemical applications in health care fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.