Abstract

Peroxynitrite (ONOO-), a highly reactive species, is profoundly involved in many physiological and pathological processes. Change of the ONOO- level usually indicates an abnormal body function. Thus, it is desired to develop a highly reliable ONOO- assay to elucidate its roles in a related disease environment. In this work, we have constructed a ratiometric molecule fluorescent probe RTFP toward ONOO- with high specificity by the combination strategy of probe screening and a rational design method. RTFP displayed excellent detection sensitivity (detection limit: 4.1 nM) and produced a highly ratiometric emission signal (130-fold). Leveraging this probe, we showed the change of ONOO- content in the free-fatty-acid-induced nonalcoholic fatty liver disease (NAFLD) and acetaminophen-induced drug-induced liver injury (DILI) cellular model and for the first time disclosed the involved mechanism of cytochrome P450 2E1 (CYP2E1) enzyme in NAFLD with a DILI pathological environment. Furthermore, RTFP also was utilized to visualize ONOO- fluctuation of living liver tissues in a high-fat-diet-caused NAFLD model. We expected that this probe may help the study of liver injury in the exploration of mechanism and signal path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call