Abstract

Here, a nanoporous gold electrode (NAu) was reported with a unique cone-shape nanohole structure for electrochemical sensing of nitric oxide (NO), which was fabricated via a facile sputtering technique on aluminum oxide membrane. Two kinds of nanoporous gold electrodes fabricated on different aluminum oxide membranes with aperture-size of 20 nm (2020NAu) and 200 nm (2040NAu) were obtained and compared in electrochemically active surface area and electro-oxidation activity. Concerning the determination of NO, it exhibited higher selectivity to NO2− and larger electro-oxidation current on 2020NAu electrode than those on 2040NAu electrode when their backsides were used as sensing interfaces. Meanwhile, the anti-interfering ability of bare 2020NAu electrode was also compared with that on Nafion-modified 2020NAu electrode. Results showed that common electroactive interferents such as H2O2, ascorbic acid, and uric acid could be hindered by cone-shape nanohole structure in the backside of 2020NAu electrode. On the basis of cyclic voltammetry, the linear range was from 4.75 × 10−8 to 9.50 × 10−7 M for NO sensing on 2020NAu electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.