Abstract
T7 RNA polymerase is commonly used to synthesize large quantities of RNA for a wide variety of applications, from basic science to mRNA therapeutics. This in vitro system, while showing high fidelity in many ways, is also well known for producing longer than encoded RNA products, particularly under high-yield reaction conditions. Specifically, the resulting product pool is contaminated by an often disperse collection of longer cis-primed extension products. In addition to reducing yield via the conversion of correctly encoded RNA to longer products, self-primed extension generates partially double-stranded RNAs that can trigger the innate immune response. Extensive and low-yield purifications are then required to produce therapeutic RNA. Under high-yield conditions, accumulating concentrations of RNA effectively compete with promoter DNA for polymerase binding, driving self-primed extension at the expense of correct initiation. In the current work, we introduce a simple and novel modification in the DNA to strengthen promoter binding, shifting the balance back toward promoter-driven synthesis and so dramatically reducing self-primed extension. The result is higher yield of the encoded RNA at the outset and reduced need for extensive purifications. The approach can readily be applied to the synthesis of mRNA-length products under high-yield conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.