Abstract
Adaptation to changing environmental conditions is an important strategy for survival of foodborne bacterial pathogens. Vibrio parahaemolyticus is a gram-negative seafoodborne enteric pathogen found in the marine environment both free living and associated with oysters. This pathogen is a moderate halophile, with optimal growth at 3% NaCl. Among the several stresses imposed upon enteric bacteria, acid stress is perhaps one of the most important. V. parahaemolyticus has a lysine decarboxylase system responsible for decarboxylation of lysine to the basic product cadaverine, an important acid stress response system in bacteria. Preadaptation to mild acid conditions, i.e., the acid tolerance response, enhances survival under lethal acid conditions. Because of the variety of conditions encountered by V. parahaemolyticus in the marine environment and in oyster postharvest facilities, we examined the nature of the V. parahaemolyticus acid tolerance response under high-salinity conditions. Short preadaptation to a 6% salt concentration increased survival of the wild-type strain but not that of a cadA mutant under lethal acid conditions. However, prolonged exposure to high salinity (16 h) increased survival of both the wild-type and the cadA mutant strains. This phenotype was not dependent on the stress response sigma factor RpoS. Although this preadaptation response is much more pronounced in V. parahaemolyticus, this characteristic is not limited to this species. Both Vibrio cholerae and Vibrio vulnificus also survive better under lethal acid stress conditions when preadapted to high-salinity conditions. High salt both protected the organism against acid stress and increased survival under -20°C cold stress conditions. High-salt adaptation of V. parahaemolyticus strains significantly increases survival under environmental stresses that would otherwise be lethal to these bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.