Abstract

Sulfur is an important element present in natural kimberlites and along with CO2, S can play a role in the kimberlite degassing. We have investigated experimentally the change in S content and CO2 solubility in synthetic kimberlitic melts in response to a range of pressure (0.5 to 2.0 GPa) and temperature (1500 to 1525 °C). Several initial S concentrations were investigated ranging from 0 to 24000 ppm. The dissolved CO2 and S were determined by Raman spectroscopy and Electron Probe Micro-Analyses. Under the investigated oxidizing conditions (ΔFMQ + 1), S is dissolved in the glass only as S6+ forming sulfate molecular groups (SO42−). The measured S concentration in the glasses increases from 2900 to 22000 ppm. These results suggest that the experimental conditions were below saturation with respect to S and that the S solubility is higher than 22000 ppm for kimberlitic melts; regardless of the experimental conditions considered here. CO2 is dissolved as CO32− molecular groups. The CO2 solubility ranges from 3.0 to 11.3 wt% between 0.5 and 2.0 GPa. CO2 solubility is not affected by the presence of S; which suggests that SO42− and CO32− clusters have two distinct molecular environments not interacting together. This result implies that both CO2 and S are efficiently transported by kimberlitic melt from the upper mantle towards the atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.