Abstract
AbstractFor hydrogenated nitrile‐butadiene rubber (HNBR) modified polyvinyl chloride (PVC), magnesium hydroxide and antimony trioxide are frequently employed as flame retardants. Fume silica is thought to be useful reinforced agent for rubber as well as efficient flame retardant for polymer‐based composites. The plasticized PVC and HNBR blend in this work were combined with three fillers mentioned above to create rubber‐plastic composites that performed well overall, with a notable improvement in combustion. The limiting oxygen index of the composites increased from 23.7% to 33.8% with no droplets falling during combustion, the smoke density rating decreased from 23.8% to 7.9%, and the maximum smoke density dropped from 95.5% to 15.5%. The cone calorimetry test findings revealed that the three fillers simultaneously prevented the emission of smoke and heat from combustion. High thermal conductivity is typically linked to excellent flame retardancy. The thermal conductivity of composites rose from 0.193 to 0.583 W m−1 K−1 with the addition of fillers. Furthermore, the low glass transition temperature and permanent set of improved composites reflect its softness and rubber elasticity. Thermogravimetric analysis was used to examine the thermal stability of the composites in nitrogen and air, and the results indicated the addition of fillers improved the thermal stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.