Abstract

Successful mine site restoration in semi-arid regions is limited by availability of topsoil and water, and saline soils are a common feature of these regions and pose an additional stressor to vegetation establishment. We tested the growth and development of a salt-tolerant species on saline topsoil incorporating 25%, 50%, 75% and 88% waste rock, examining soil water content and plant water use to determine how waste rock content affected plant-water relations, growth and development. Under well-watered conditions higher percentages of waste rock lowered the volumetric water content of the total soil mix, causing a reduction in stomatal conductance. Under drought conditions, higher waste rock content reduced rates of water loss and allowed stomatal conductance to be maintained over a longer period. There was no significant or optimal relationship between waste rock content and plant growth, indicating that the addition of waste rock to topsoil has complex effects on plant-water relations and growth. We demonstrate that augmentation of limited topsoil resources with waste rock is a promising option for improving plant resistance to drought in mine site restoration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.