Abstract

AbstractMixed‐cation lead mixed‐halide perovskites are employed as the photoactive material in single‐layer solution‐processed photodetectors fabricated with coplanar asymmetric nanogap Al–Au and indium tin oxide–Al electrodes. The nanogap electrodes, bearing an interelectrode distance of ≈10 nm, are patterned via adhesion lithography, a simple, low‐cost, and high‐throughput technique. Different electrode shapes and sizes are demonstrated on glass and flexible plastic substrates, effectively engineering the device architecture, and, along with perovskite film and material optimization, paving the way toward devices with tunable operational characteristics. The optimized coplanar nanogap junction perovskite photodetectors show responsivities up to 33 A W−1, specific detectivity on the order of 1011 Jones, and response times below 260 ns, while retaining a low dark current (0.3 nA) under −2 V reverse bias. These values outperform the vast majority of perovskite photodetectors reported so far, while avoiding the complicated fabrication steps involved in conventional multilayer device structures. This work highlights the promising potential of the proposed asymmetric nanogap electrode architecture for application in the field of flexible optoelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.