Abstract

The unimorph actuator of the LaNi5 thin film deposited on polyimide substrates can be expected as a sensor and/or a controller of hydrogen gas flux in various hydrogen-related devices, since controlling the hydrogen concentration in the film by pressure change drives this actuator reversibility. In this study, the effect of the palladium deposition was investigated on the mechanical response of this thin film actuator. It was shown that the initiating time (incubation period) for the actuation to be measured after hydrogen gas exposure was reduced from 100 to 1 s by the palladium deposition. This significantly improvement of the mechanical response was attributed to the change in the rate determining steps: the dissociation of hydrogen gas molecules on the sample surface for the sample without palladium deposition, and hydrogen diffusion in the LaNi5 film for the palladium deposited sample. It was also suggested that the high permeability of hydrogen in palladium film at room temperature resulted in the high responsiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call