Abstract
Various hybrid zero-dimensional/two-dimensional (0D/2D) systems have been developed to fabricate phototransistors with better performance compared to two-dimensional (2D) layered materials as well as broaden potential applications. Herein, we integrated environment-friendly InP@ZnS core-shell QDs with high efficiency of light absorption and light-emitting properties with bilayer MoS2 for the realization of 0D/2D mixed-dimensional phototransistors. Interdigitated (IDT) electrodes with Pt-patterned arrays, acting as light collectors as well as plasmonic resonators, can further enhance light harvesting from the InP@ZnS-MoS2 hybrid phototransistors, contributing to achieving a photoresponsivity as high as 1374 A·W-1. Moreover, thanks to the asymmetric Pt/MoS2 Schottky junction at the source/drain contact, a self-powered characteristic with an ultrafast speed of 21.5 μs was achieved, which is among the best performances for 2D layered material-based phototransistors. In terms of these features, we demonstrated the artificial synapse network with short-time plasticity based on the self-powered photodetection device. Our work reveals the great potential of 0D/2D hybrid phototransistors for high-response, ultrafast-speed, and self-powered photodetectors coupled with artificial neuromorphic function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.