Abstract

High quality w-MgxZn1-xO thin films were grown epitaxially on c-plane sapphire substrates by plasma-assisted Molecular Beam Epitaxy. ZnO thin films with high crystalline quality, low defect and dislocation densities, and subnanometer surface roughness were achieved by applying a low temperature nucleation layer. By tuning Mg/Zn flux ratio, wurtzite MgxZn1-xO thin films with Mg composition as high as x=0.46 were obtained without phase segregation. Metal- Semiconductor-Metal (MSM) photoconductive and Schottky barrier devices with interdigitated electrode geometry and active surface area of 1 mm2 were fabricated and characterized. Resultant devices showed ~100 A/W peak responsivity at wavelength of ~260nm. We also report on cubic rock salt c-MgxZn1-xO thin films, following a non-traditional approach on MgO substrates, to demonstrate solar-blind photoresponse in MSM photodetectors, realizing a peak responsivity of 460 A/W (@ 250 nm) and 12.6 mA/W (@ 240nm) for mixed phase and single crystal films, respectively. A specific focus of the work is on identifying the impact of various growth parameters on the performance of the c- MgZnO detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.