Abstract
Despite varved sediments being widely used for paleolimnological studies, little information is available about how climate and meteorological signals are recorded in varves at sub-seasonal to annual scale. We investigate links between meteorological and limnological conditions and their influence on biochemical varve formation and preservation of sub-seasonal climate signals in the sediments. Our study site is postglacial Lake Żabińskie located in NE Poland, in which thick and complex varved sediments have been studied for the last decade. These sediments provide an excellent material for studying the influence of short-term weather conditions on geological records. For this, we use an almost decade-long (2012–2019) series of observational data (meteorological conditions, physicochemical water parameters, and modern sedimentation observations) to understand varve formation processes. Then we compare these results with a high-resolution biogeochemical proxy dataset based on μXRF and hyperspectral imaging (HSI) measurements of a varved sediment core spanning the same period. Here we show direct links between the meteorological and limnological conditions and varve formation processes. This is particularly the case for air temperature which governs calcite laminae formation and primary production. We further show that calcite grain size is influenced by lake mixing intensity resulting from the wind activity, and that holomixis events lead to the formation of distinct manganese (Mn) peaks in the typically anoxic sediments. Our findings show that high-resolution non-destructive spectroscopy methods applied to complex biochemical varves, in combination with long observational limnological datasets, provide useful information for tracking meteorological and limnological processes in the past.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.