Abstract

Considering a pure and not necessarily weak phase object, we review a noniterative and nonlinear single-distance phase-retrieval algorithm. The latter exploits the fact that a well-known linear contrast-transfer function, which incorporates all orders in object-detector distance, can be modified to yield a quasiparticle dispersion. Accepting a small loss of information, this algorithm also retrieves the high-frequency parts of the phase in an artefact free way. We point out an extension of this highly resolving quasiparticle approach for mixed objects by assuming a global attenuation-phase duality. Tomographically reconstructing two developmental stages in Xenopus laevis, we compare our approach with a linear algorithm, based on the transport-of-intensity equation, which suppresses high-frequency information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call