Abstract

This paper presents a 3D least-squares wave-equation migration method that yields regularized common-image gathers (CIGs) for amplitude-versus-angle (AVA) analysis. In least-squares migration, we pose seismic imaging as a linear inverse problem; this provides at least two advantages. First, we are able to incorporate model-space weighting operators that improve the amplitude fidelity of CIGs. Second, the influence of improperly sampled data (footprint noise) can be diminished by incorporating data-space weighting operators. To investigate the viability of this class of methods for oil and gas exploration, we test the algorithm with a real-data example from the Western Canadian Sedimentary Basin. To make our problem computationally feasible, we utilize the 3D common-azimuth approximation in the migration algorithm. The inversion algorithm uses the method of conjugate gradients with the addition of a ray-parameter-dependent smoothing constraint that minimizes sampling and aperture artifacts. We show that more robust AVA attributes can be obtained by properly selecting the model and data-space regularization operators. The algorithm is implemented in conjunction with a preconditioning strategy to accelerate convergence. Posing the migration problem as an inverse problem leads to enhanced event continuity in CIGs and, hence, more reliable AVA estimates. The vertical resolution of the inverted image also improves as a consequence of increased coherence in CIGs and, in addition, by implicitly introducing migration deconvolution in the inversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.