Abstract
We propose a new scheme for high-resolution amplitude-variation-with-ray-parameter (AVP) imaging that uses nonquadratic regularization. We pose migration as an inverse problem and propose a cost function that uses a priori information about common-image gathers (CIGs). In particular, we introduce two regularization constraints: smoothness along the offset-ray-parameter axis and sparseness in depth. The two-step regularization yields high-resolution CIGs with robust estimates of AVP. We use an iterative reweighted least-squares conjugate gradient algorithm to minimize the cost function of the problem. We test the algorithm with synthetic data (a wedge model and the Marmousi data set) and a real data set (Erskine area, Alberta). Tests show our method helps to enhance the vertical resolution of CIGs and improves amplitude accuracy along the ray-parameter direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.