Abstract

W-band inverse synthetic aperture radar (ISAR) imaging systems are very useful for automatic target recognition and classification due to their high spatial resolution, high penetration and small antenna size. Broadband linear frequency modulated wave (LFMW) is usually applied to this system for its de-chirping characteristic. However, nearly all of the LFMW generated in electronic W-band ISAR system are based on multipliers and mixers, suffering seriously from electromagnetic interference (EMI) and timing jitter. And photonic-assisted LFMW generator reported before is always limited by bandwidth or time aperture. In this paper, for the first time, we propose and experimentally demonstrate a high-resolution W-band ISAR imaging system utilizing a novel logic-operation-based photonic digital-to-analog converter (LOPDAC). The equivalent sampling rate of the LOPDAC is twice as large as the rate of the digital driving signal. Thus, a broadband LFMW with a large time aperture can be generated by the LOPDAC. This LFMW is up-converted to W band with an optical frequency comb. After photonic-assisted de-chirping processing and data processing to the echo, a high-resolution two-dimension image can be obtained. Experimentally, W-band radar with a time-bandwidth product (TBWP) as large as 79200 (bandwidth 8 GHz; temporal duration 9.9 us) is established and investigated. Results show that the two-dimension (range and cross-range) imaging resolution is ~1.9 cm × ~1.6 cm with a sampling rate of 100 MSa/s in the receiver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.