Abstract

We propose a high-resolution velocity analysis method to estimate the electromagnetic wave propagation velocity in subsurface medium. The estimation is achieved by applying the l-1 norm regularized least-squares method to the conventional common-midpoint (CMP) velocity analysis algorithm. The proposed method can provide not only higher resolution than the conventional velocity analysis method, but can also be applied with a coarse sampling array system, such as our array ground penetrating radar YAKUMO, which returns eight CMP traces within a two meter width. The main purpose of this approach is for precise pavement inspection at shallow depths. We applied this method to both a simulated dataset and real data acquired by YAKUMO at a model airport taxiway to detect the slight velocity changes caused by millimeter-thin cracks filled with air or water within the 15 cm-thick asphalt pavement. In both cases slight velocity changes of about 0.005 m/ns can be detected, and the difference between air- and water-filled cracks can be distinguished. Also, this method is applied to a data acquired at airport taxi-way, the damaged parts are detected successfully and shows good agreement with the corning results. The results indicate that the proposed method is effective for pavement inspection, especially in the presence of thin cracks that cannot be seen directly with the reflected signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.