Abstract

Spatially explicit urban air quality information is important for urban fine-management and public life. However, existing air quality measurement methods still have some limitations on spatial coverage and system stability. A micro station is an emerging monitoring system with multiple sensors, which can be deployed to provide dense air quality monitoring data. Here, we proposed a method for urban air quality mapping at high-resolution for multiple pollutants. By using the dense air quality monitoring data from 448 micro stations in Lanzhou city, we developed a decision tree model to infer the distribution of citywide air quality at a 500 m × 500 m × 1 h resolution, with a coefficient of determination (R2) value of 0.740 for PM2.5, 0.754 for CO and 0.716 for SO2. Meanwhile, we also show that the deployment density of the monitoring stations can have a significant impact on the air quality inference results. Our method is able to show both short-term and long-term distribution of multiple important pollutants in the city, which demonstrates the potential and feasibility of dense monitoring data combined with advanced data science methods to support urban atmospheric environment fine-management, policy making, and public health studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.